Structure Reports

Online
ISSN 1600-5368

Cui-Cui Yuan, ${ }^{\text {a }}$ Li Wu, ${ }^{\text {b }}$ Zhi-Yong

 Xing ${ }^{\text {b }}$ and Xue-Fang Shi ${ }^{\mathbf{a} \text { * }}$${ }^{\text {a }}$ Department of Chemistry, Tianjin Normal University, Tianjin 300074, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: xuefangshi@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.107$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Chlorobenzaldehyde (pyrazin-2-ylcarbonyl)hydrazone

The title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}$, was prepared by the reaction of pyrazine-2-carboxylic acid hydrazide and 4chlorobenzaldehyde in methanol. In the crystal structure, there is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, forming a five-membered ring, and an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, resulting in a one-dimensional infinite chain along the a axis. Weak face-to-face $\pi-\pi$ stacking interactions are also observed between two antiparallel molecules. These $\pi-\pi$ stacking interactions further join the molecules into a three-dimensional structure.

Comment

Pyrazinyl hydrazonecarbonyl compounds (Edwards et al., 1975; Kushner et al., 1952) have many applications in the treatment of tuberculosis and also exhibit fungicidal activity. Two related hydrazone complexes have been investigated previously (Pan \& Yang, 2005a,b). This kind of Schiff base possesses pharmacological activity (Parashar et al., 1988) and photochromic properties (Hadjoudis et al., 1987). Here we report the crystal structure of 4-chlorobenzaldehyde (pyra-zine-2-carbonyl)hydrazone, (I).

Compound (I) adopts a nearly planar conformation, with an r.m.s. deviation of $0.0985 \AA$ for all atoms. In the crystal structure, there is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond forming a five-membered ring (Table 2) and also an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the O atom of the carbonyl group and C6, resulting in a onedimensional infinite chain along the a axis (Fig. 2). There are weak face-to-face $\pi-\pi$ stacking interactions between two antiparallel molecules, with the centroids of the benzene and pyrazine rings separated by 3.830 (3) and 4.017 (3) Å.

Experimental

The title compound was synthesized by the reaction of pyrazine-2carboxylic acid hydrazide ($1.3 \mathrm{~g}, 5 \mathrm{mmol}$) and 4-chlorobenzaldehyde $(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ in methanol (60 ml). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (yield 88%, m.p. 479-480 K).
\qquad

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}$
$M_{r}=260.68$
Triclinic, $P \overline{1}$
$a=5.8860$ (16) \AA
$b=7.818$ (2) \AA
$c=13.500(4) \AA$
$\alpha=84.883(5)^{\circ}$
$\beta=80.500(5)^{\circ}$
$\gamma=73.769(4)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.925, T_{\text {max }}=0.969$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.107$
$S=1.02$
2055 reflections
166 parameters
H atoms treated by a mixture of independent and constrained refinement
$V=587.7(3) \AA^{3}$
$Z=2$
$D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless $0.22 \times 0.18 \times 0.10 \mathrm{~mm}$

3000 measured reflections 2055 independent reflections 1350 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.044 P)^{2}\right. \\
&+0.1868 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A $\cdots \mathrm{N} 2$	$0.83(3)$	$2.27(3)$	$2.689(3)$	$111(2)$
C6-H6 O^{i}	0.93	$2.24(3)$	$3.133(3)$	$160(2)$

Symmetry code: (i) $x+1, y, z$.
All H atoms were initially located in a difference Fourier map. The $\mathrm{C}-\mathrm{H}$ atoms were then constrained to an ideal geometry, with methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The coordinates of the amino H atom were refined freely, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1
The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2
The molecular packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Edwards, E. I., Epton, R. \& Marr, G. (1975). J. Organomet. Chem. 85, C23C25.
Hadjoudis, E., Vittorakis, M. \& Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.
Kushner, S., Dalalian, H., Sanjurjo, J. L., Bach, F. L., Safir, S. R. Jr, Smith, V. K. \& Williams, J. H. Jr (1952). J. Am. Chem. Soc. 74, 3617-3621.
Pan, F.-Y. \& Yang, J.-G. (2005a). Acta Cryst. E61, o352-o353.
Pan, F.-Y. \& Yang, J.-G. (2005b). Acta Cryst. E61, o354-o355.
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

